Geochemical control on uranium(IV) mobility in a mining-impacted wetland.
نویسندگان
چکیده
Wetlands often act as sinks for uranium and other trace elements. Our previous work at a mining-impacted wetland in France showed that a labile noncrystalline U(IV) species consisting of U(IV) bound to Al-P-Fe-Si aggregates was predominant in the soil at locations exhibiting a U-containing clay-rich layer within the top 30 cm. Additionally, in the porewater, the association of U(IV) with Fe(II) and organic matter colloids significantly increased U(IV) mobility in the wetland. In the present study, within the same wetland, we further demonstrate that the speciation of U at a location not impacted by the clay-rich layer is a different noncrystalline U(IV) species, consisting of U(IV) bound to organic matter in soil. We also show that the clay-poor location includes an abundant sulfate supply and active microbial sulfate reduction that induce substantial pyrite (FeS2) precipitation. As a result, Fe(II) concentrations in the porewater are much lower than those at clay-impacted zones. U porewater concentrations (0.02-0.26 μM) are also considerably lower than those at the clay-impacted locations (0.21-3.4 μM) resulting in minimal U mobility. In both cases, soil-associated U represents more than 99% of U in the wetland. We conclude that the low U mobility reported at clay-poor locations is due to the limited association of Fe(II) with organic matter colloids in porewater and/or higher stability of the noncrystalline U(IV) species in soil at those locations.
منابع مشابه
Mobile uranium(IV)-bearing colloids in a mining-impacted wetland.
Tetravalent uranium is commonly assumed to form insoluble species, resulting in the immobilization of uranium under reducing conditions. Here we present the first report of mobile U(IV)-bearing colloids in the environment, bringing into question this common assumption. We investigate the mobility of uranium in a mining-impacted wetland in France harbouring uranium concentrations of up to 14,000...
متن کاملPeatlands as Filters for Polluted Mine Water?—A Case Study from an Uranium-Contaminated Karst System in South Africa
Located downstream of goldfields of the Witwatersrand basin, the Gerhard Minnebron (GMB) Eye—as major water source for downstream community of some 300,000 people—may be impacted on by mining-related water pollution especially with uranium (U). Containing up to 5 m-thick deposits of peat that is frequently reported to act as a filter for U and other heavy metals, this paper is the first part of...
متن کاملPhylogenetic Diversity of Archaea and the Archaeal Ammonia Monooxygenase Gene in Uranium Mining-Impacted Locations in Bulgaria
Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo ur...
متن کاملGold tailings as a source of waterborne uranium contamination of streams - The Koekemoerspruit# (Klerksdorp goldfield, South Africa) as a case study Part I of III: Uranium migration along the aqueous pathway
Tailings deposits from gold and uranium (U) mining in the Witwatersrand basin often contain elevated levels of radioactive and chemo-toxic heavy metals. Through seepage, dissolved U and other metals migrate from tailings deposits via groundwater into adjacent fluvial systems. The subsequent transport through flowing surface water is one of the most effective pathways of distributing contaminant...
متن کاملThe geochemistry of natural wetlands in former uranium milling sites (Eastern Germany) and its implications for uranium retention
Discharge from former uranium mining and milling areas is world wide a source of elevated uranium contents in wetlands. The efficiency of organic rich wetland environments for entrapment and accumulation of uranium was assessed in this work using hydrogeochemical field studies of natural small-sized wetlands in Thuringia and Saxony, Eastern Germany. The objective was to estimate, if artificial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 48 17 شماره
صفحات -
تاریخ انتشار 2014